cl-buchberger

2011-05-22
cl-buchberger
=============
Juan M. Bello Rivas <jmbr@superadditive.com>
June 2009

image::images/cl-buchberger.png[Screenshot]

Overview
--------

cl-buchberger is a Common Lisp implementation of Buchberger's
algorithm for the computation of Gr?bner bases.

Currently this package can compute Gr?bner bases of ideals in
multivariate polynomial rings over the rationals.

Availability
------------

Download the latest version of this package from
http://github.com/jmbr/cl-buchberger/tarball/master

Portability
-----------

The code has been tested under

1. ABCL 0.16.0-dev
2. CLISP 2.47
3. ECL 9.6.1
4. SBCL 1.0.29

License
-------

cl-buchberger is released under the GNU GPLv2.

Usage
-----

Loading the package
~~~~~~~~~~~~~~~~~~~

You need ASDF installed in your system.  To load cl-buchberger,
write:

------------------------------------------------------
  CL-USER> (asdf:operate 'asdf:load-op :cl-buchberger)
  NIL
  CL-USER> (use-package :cl-buchberger)
  T
------------------------------------------------------

Defining a polynomial ring
~~~~~~~~~~~~~~~~~~~~~~~~~~

There's a default ring which is the ring of polynomials on X, Y, Z
over the rationals.  To define custom polynomial rings use:

---------------------------------------------------------
  CL-USER> (make-instance 'polynomial-ring :variables
                          (list 'x 'y 'z 'u 'w 'r 's 't))
  #<POLYNOMIAL-RING X, Y, Z, U, W, R, S, T over RATIONAL>
---------------------------------------------------------

To change the default ring just bind \*RING\* to whatever you want:

---------------------------------------------------------------------
  CL-USER> (defparameter *ring*
             (make-instance 'polynomial-ring :variables (list 'x 'y))
             "QQ[X, Y]")
  *RING*
  CL-USER> *ring*
  #<POLYNOMIAL-RING X, Y over RATIONAL>
---------------------------------------------------------------------

Defining polynomials
~~~~~~~~~~~~~~~~~~~~

Polynomials are defined using a list of terms where each term is a
list with the coefficient as its first term and where the remaining
elements are variable exponents.  For example: (1 1 2 3) would
correspond to the term $$`xy^2z^3`$$

Thus, to create a polynomial write:

-------------------------------------------------------------------
  CL-USER> (defparameter *l* (make-polynomial '((1 3 0) (-2 1 1))))
  *L*
  CL-USER> *l*
  #<POLYNOMIAL x^3 - 2xy>
  CL-USER> (defparameter *m* (make-polynomial '((3 4 1) (1 2 0))))
  *M*
  CL-USER> *m*
  #<POLYNOMIAL 3x^4y + x^2>
-------------------------------------------------------------------

Polynomial arithmetic
~~~~~~~~~~~~~~~~~~~~~

Use the generic functions RING+, RING-, RING*, and RING/ for the usual
arithmetic operations.

The function RING/ is the multivariate polynomial division algorithm
and takes a polynomial and a sequence of divisors to produce a
sequence of quotients and a remainder.

To set the default monomial ordering, bind \*MONOMIAL-ORDERING\* to the
relevant function (which defaults to LEX>).  For example:

--------------------------------------------------------
  CL-USER> (defparameter *monomial-ordering* #'grevlex>)
  *MONOMIAL-ORDERING*
--------------------------------------------------------

Also, you can use the macro WITH-MONOMIAL-ORDERING to define the
current monomial ordering as in:

-------------------------------------------
  CL-USER> (with-monomial-ordering #'grlex>
             (ring/ *m* *l*))
  #(#<POLYNOMIAL 3xy>)
  #<POLYNOMIAL 6x^2y^2 + x^2>
-------------------------------------------

Computing Gr?bner bases
~~~~~~~~~~~~~~~~~~~~~~~

The functions GROEBNER and REDUCED-GROEBNER compute Gr?bner bases and
reduced Gr?bner bases respectively.  Both of them take a sequence of
polynomials as parameter.  An alternative is to construct a polynomial
ideal and obtain its reduced Gr?bner basis using the BASIS generic
function.

For example:

--------------------------------------------------------------------------------
  CL-USER> (defparameter *katsura-3*
             (make-ideal (list (make-polynomial '((1 1 0 0) (2 0 1 0) (2 0 0 1) (-1 0 0 0)))
                               (make-polynomial '((1 2 0 0) (-1 1 0 0) (2 0 2 0) (2 0 0 2)))
                               (make-polynomial '((2 1 1 0) (2 0 1 1) (-1 0 1 0)))))
             "Katsura-3 over QQ[x, y, z] (default ring)")
  *KATSURA-3*
  CL-USER> *katsura-3*
  #<IDEAL :RING #<POLYNOMIAL-RING :VARIABLES (X Y Z)
          :BASE-FIELD RATIONAL> :GENERATORS #(#<POLYNOMIAL x + 2y + 2z - 1>
                                            #<POLYNOMIAL x^2 - x + 2y^2 + 2z^2>
                                            #<POLYNOMIAL 2xy + 2yz - y>)>
  CL-USER> (basis *katsura-3*)
  #(#<POLYNOMIAL x - 60z^3 + 158/7z^2 + 8/7z - 1>
    #<POLYNOMIAL y + 30z^3 - 79/7z^2 + 3/7z>
    #<POLYNOMIAL z^4 - 10/21z^3 + 1/84z^2 + 1/84z>)
--------------------------------------------------------------------------------

Bug reports
-----------

There's a bug tracker available at http://github.com/jmbr/cl-buchberger/issues
Author
Juan M. Bello Rivas <jmbr@superadditive.com>
License
GNU GPLv2
Categories
algorithm, mathematics