oclcl
2019-05-21
oclcl is a library S-expression to OpenCL C.
oclcl
oclcl is a library to use OpenCL in Common Lisp programs. It provides the kernel description language with which users can define OpenCL kernel functions in S-expression. The kernel description language also provides facilities to define kernel macros and kernel symbol macros in addition to kernel functions. oclcl's kernel macro and kernel symbol macro offer powerful abstraction that OpenCL C itself does not have and provide enormous advantage in resource-limited GPU programming.
Installation
oclcl is now available on Quicklisp.
(ql:quickload :oclcl)
Requirements
oclcl requires following:
- OpenCL 1.2
- SBCL 1.3.1
Test
(ql:quickload :prove)
(prove:run :oclcl-test)
or
$ ros install prove
$ run-prove oclcl/oclcl-test.asd
Verification environments
oclcl is verified to work in following environments:
Environment 1
- Ubuntu 15.04 x86_64
- Intel Core i5-4210U
- POCL 0.10
- SBCL 1.3.1 64-bit
- Roswell 0.0.3.50
Environment 2
- Ubuntu 16.04 x86_64
- NVIDIA GeForce GTX 660
- OpenCL 1.2 CUDA 8.0.20
- SBCL 1.3.4 64-bit
- Roswell 0.0.5.59
Environment 3
- Ubuntu 14.04 x86_64
- AMD Radeon HD 5700 Series
- OpenCL C 1.2
- SBCL 1.3.2 64-bit
- Roswell 0.0.5.58
Kernel Description Language
Types
Support types.
charchar2char3char4char8char16char*char2*char3*char4*char8*char16*ucharuchar2uchar3uchar4uchar8uchar16uchar*uchar2*uchar3*uchar4*uchar8*uchar16*shortshort2short3short4short8short16short*short2*short3*short4*short8*short16*ushortushort2ushort3ushort4ushort8ushort16ushort*ushort2*ushort3*ushort4*ushort8*ushort16*intint2int3int4int8int16int*int2*int3*int4*int8*int16*uintuint2uint3uint4uint8uint16uint*uint2*uint3*uint4*uint8*uint16*longlong2long3long4long8long16long*long2*long3*long4*long8*long16*ulongulong2ulong3ulong4ulong8ulong16ulong*ulong2*ulong3*ulong4*ulong8*ulong16*floatfloat2float3float4float8float16float*float2*float3*float4*float8*float16*doubledouble2double3double4double8double16double*double2*double3*double4*double8*double16*boolvoidsize-t
IF statement
IF test-form then-form [else-form]
if allows the execution of a form to be dependent on a single test-form. First test-form is evaluated. If the result is true, then then-form is selected; otherwise else-form is selected. Whichever form is selected is then evaluated. If else-form is not provided, does nothing when else-form is selected.
Example:
(if (= a 0)
(return 0)
(return 1))
Compiled:
if (a == 0) {
return 0;
} else {
return 1;
}
LET statement
LET ({(var init-form)}*) statement*
let declares new variable bindings and set corresponding init-forms to them and execute a series of statements that use these bindings. let performs the bindings in parallel. For sequentially, use let* kernel macro instead.
Example:
(let ((i 0))
(return i))
Compiled:
{
int i = 0;
return i;
}
SYMBOL-MACROLET statement
SYMBOL-MACROLET ({(symbol expansion)}*) statement*
symbol-macrolet establishes symbol expansion rules in the variable environment and execute a series of statements that use these rules. In cl-cuda's compilation process, the symbol macros found in a form are replaces by corresponding expansions.
Example:
(symbol-macrolet ((x 1.0))
(return x))
Compiled:
{
return 1.0;
}
DO statement
DO ({(var init-form step-form)}*) (test-form) statement*
do iterates over a group of statements while test-form holds. do accepts an arbitrary number of iteration vars and their initial values are supplied by init-forms. step-forms supply how the vars should be updated on succeeding iterations through the loop.
Example:
(do ((a 0 (+ a 1))
(b 0 (+ b 1)))
((> a 15))
(do-some-statement))
Compiled:
for ( int a = 0, int b = 0; ! (a > 15); a = a + 1, b = b + 1 )
{
do_some_statement();
}
WITH-LOCAL-MEMORY statement
WITH-LOCAL-MEMORY ({(var type size*)}*) statement*
with-local-memory declares new variable bindings on local memory by adding __local variable specifiers. It allows to declare array variables if dimensions are provided. A series of statements are executed with these bindings.
Example:
(with-local-memory ((a int 16)
(b float 16 16))
(return))
Compiled:
{
__local int a[16];
__local float b[16][16];
return;
}
SET statement
SET reference expression
set provides simple variable assignment. It accepts one of variable, structure and array references as reference.
Example:
(set x 1.0)
(set (float4-x y 1.0)
(set (aref z 0) 1.0)
Compiled:
x = 1.0;
y.x = 1.0;
z[0] = 1.0;
PROGN statement
PROGN statement*
progn evaluates statements, in the order in which they are given.
Example:
(progn
(do-some-statements)
(do-more-statements))
Compiled:
do_some_statements();
do_more_statements();
RETURN statement
RETURN [return-form]
return returns control, with return-form if supplied, from a kernel function.
Example:
(return 0)
Compiled:
return 0;
Built in Functions
Implementation status of built in functions.
| Status | Functions |
|---|---|
| Yes | Work-Item |
| Part | Math |
| Yes | Integer |
| Part | Common |
| Yes | Geometric |
| No | Relational |
| No | Vector Data Load and Store |
| Yes | Synchronization |
| Yes | Explicit Memory Fence |
| No | Async Copies from Global to Local Memory, Local to Global Memory, and Prefetch |
| Yes | Atomic |
| Yes | Miscellaneous Vector |
| Yes | printf |
| No | Image Read and Write Functions |
Author
- gos-k (mag4.elan@gmail.com)
C source generator is forked from cl-cuda.
Copyright
2015 gos-k (mag4.elan@gmail.com)
cl-cuda
Copyright (c) 2012 Masayuki Takagi (kamonama@gmail.com)
License
Licensed under the LLGPL License.